The Two-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation
نویسندگان
چکیده
Whenever a tuned-mass damper is attached to a primary system, motion of the absorber body in more than one degree of freedom (DOF) relative to the primary system can be used to attenuate vibration of the primary system. In this paper, we propose that more than one mode of vibration of an absorber body relative to a primary system be tuned to suppress single-mode vibration of a primary system. We cast the problem of optimization of the multi-degree-of-freedom connection between the absorber body and primary structure as a decentralized control problem and develop optimization algorithms based on the H2 and H-infinity norms to minimize the response to random and harmonic excitations, respectively. We find that a two-DOF absorber can attain better performance than the optimal SDOF absorber, even for the case where the rotary inertia of the absorber tends to zero. With properly chosen connection locations, the two-DOF absorber achieves better vibration suppression than two separate absorbers of optimized mass distribution. A two-DOF absorber with a negative damper in one of its two connections to the primary system yields significantly better performance than absorbers with only positive dampers. DOI: 10.1115/1.2128639
منابع مشابه
The Multi-Degree-of-Freedom Tuned-Mass Damper for Suppression of Single-Mode Vibration Under Random and Harmonic Excitation∗
Formulas for the optimal design of single-degree-of-freedom (SDOF) tuned-mass dampers (or dynamic vibration absorbers) for SDOF structures under random and harmonic excitations have been available for many years. Whenever an absorber body is attached to a primary system, there is potential for utilization of motion in more than one degree of freedom of the body relative to the primary system. I...
متن کاملOptimum Parameters for Tuned Mass Damper Using Shuffled Complex Evolution (SCE) Algorithm
This study is investigated the optimum parameters for a tuned mass damper (TMD) under the seismic excitation. Shuffled complex evolution (SCE) is a meta-heuristic optimization method which is used to find the optimum damping and tuning frequency ratio for a TMD. The efficiency of the TMD is evaluated by decreasing the structural displacement dynamic magnification factor (DDMF) and acceleration ...
متن کاملInerter-based Vibration Suppression Systems for Laterally and Base-Excited Structures
The paper discusses the design and performance of a novel type of passive control system used for suppressing unwanted vibrations in civil engineering structures subjected to both lateral and base excitation. The new control system is inspired by the traditional tuned mass damper (TMD) with the modification that the mass is replaced by an inerter. An inerter has a two-terminal flywheel device c...
متن کاملAssessment of Semi-Active Tunes Mass Damper Application in Suppressing Seismic-Induced Vibration of an Existing Jacket Platform
In this study, mass, stiffness and damping matrices of the Nosrat jacket; located in Persian Gulf; equipped with Semi Active Tuned Mass Damper (SATMD) system have been derived after modeling the structure in SACS software. Owing to huge number of the degrees of freedom in the model, computation of on-line control of SATMD was time consuming. For this purpose, the size of the model was reduced i...
متن کاملIdentification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response
In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...
متن کامل